164 research outputs found

    A local limit theorem for triple connections in subcritical Bernoulli percolation

    Full text link
    We prove a local limit theorem for the probability of a site to be connected by disjoint paths to three points in subcritical Bernoulli percolation on Zd,d2\mathbb{Z}^{d},\,d\geq2 in the limit where their distances tend to infinity.Comment: 31 page

    Layering in the Ising model

    Full text link
    We consider the three-dimensional Ising model in a half-space with a boundary field (no bulk field). We compute the low-temperature expansion of layering transition lines

    Thermodynamic instabilities in one dimensional particle lattices: a finite-size scaling approach

    Full text link
    One-dimensional thermodynamic instabilities are phase transitions not prohibited by Landau's argument, because the energy of the domain wall (DW) which separates the two phases is infinite. Whether they actually occur in a given system of particles must be demonstrated on a case-by-case basis by examining the (non-) analyticity properties of the corresponding transfer integral (TI) equation. The present note deals with the generic Peyrard-Bishop model of DNA denaturation. In the absence of exact statements about the spectrum of the singular TI equation, I use Gauss-Hermite quadratures to achieve a single-parameter-controlled approach to rounding effects; this allows me to employ finite-size scaling concepts in order to demonstrate that a phase transition occurs and to derive the critical exponents.Comment: 5 pages, 6 figures, subm. to Phys. Rev.

    Molecular ordering of precursor films during spreading of tiny liquid droplets

    Full text link
    In this work we address a novel feature of spreading dynamics of tiny liquid droplets on solid surfaces, namely the case where the ends of the molecules feel different interactions to the surface. We consider a simple model of dimers and short chain--like molecules which cannot form chemical bonds with the surface. We study the spreading dynamics by Molecular Dynamics techniques. In particular, we examine the microscopic structure of the time--dependent precursor film and find that in some cases it can exhibit a high degree of local order. This order persists even for flexible chains. Our results suggest the possibility of extracting information about molecular interactions from the structure of the precursor film.Comment: 4 pages, revtex, no figures, complete file available from ftp://rock.helsinki.fi/pub/preprints/tft/ or at http://www.physics.helsinki.fi/tft/tft_preprints.html (to appear in Phys. Rev. E Rapid Comm.

    Exact time-dependent correlation functions for the symmetric exclusion process with open boundary

    Get PDF
    As a simple model for single-file diffusion of hard core particles we investigate the one-dimensional symmetric exclusion process. We consider an open semi-infinite system where one end is coupled to an external reservoir of constant density ρ\rho^\ast and which initially is in an non-equilibrium state with bulk density ρ0\rho_0. We calculate the exact time-dependent two-point density correlation function Ck,l(t)C_{k,l}(t)\equiv - and the mean and variance of the integrated average net flux of particles N(t)N(0)N(t)-N(0) that have entered (or left) the system up to time tt. We find that the boundary region of the semi-infinite relaxing system is in a state similar to the bulk state of a finite stationary system driven by a boundary gradient. The symmetric exclusion model provides a rare example where such behavior can be proved rigorously on the level of equal-time two-point correlation functions. Some implications for the relaxational dynamics of entangled polymers and for single-file diffusion in colloidal systems are discussed.Comment: 11 pages, uses REVTEX, 2 figures. Minor typos corrected and reference 17 adde

    A Soluble Phase Field Model

    Get PDF
    The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized Phase Field model, which describes the dynamics of an ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to a conserved field (e.g. thermal field). After obtaining the rules governing the evolution process, by means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full solutions of the exact self-consistent equations for the model are also obtained and compared with computer simulation results. In addition, in order to check the validity of the present model we confronted its predictions against those of the standard Phase field model and found reasonable agreement. Interestingly, we find that the system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e. on the initial condition. Such a phase is characterized by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review

    Nonequilibrium wetting

    Full text link
    When a nonequilibrium growing interface in the presence of a wall is considered a nonequilibrium wetting transition may take place. This transition can be studied trough Langevin equations or discrete growth models. In the first case, the Kardar-Parisi-Zhang equation, which defines a very robust universality class for nonequilibrium moving interfaces, with a soft-wall potential is considered. While in the second, microscopic models, in the corresponding universality class, with evaporation and deposition of particles in the presence of hard-wall are studied. Equilibrium wetting is related to a particular case of the problem, it corresponds to the Edwards-Wilkinson equation with a potential in the continuum approach or to the fulfillment of detailed balance in the microscopic models. In this review we present the analytical and numerical methods used to investigate the problem and the very rich behavior that is observed with them.Comment: Review, 36 pages, 16 figure

    Surface and capillary transitions in an associating binary mixture model

    Get PDF
    We investigate the phase diagram of a two-component associating fluid mixture in the presence of selectively adsorbing substrates. The mixture is characterized by a bulk phase diagram which displays peculiar features such as closed loops of immiscibility. The presence of the substrates may interfere the physical mechanism involved in the appearance of these phase diagrams, leading to an enhanced tendency to phase separate below the lower critical solution point. Three different cases are considered: a planar solid surface in contact with a bulk fluid, while the other two represent two models of porous systems, namely a slit and an array on infinitely long parallel cylinders. We confirm that surface transitions, as well as capillary transitions for a large area/volume ratio, are stabilized in the one-phase region. Applicability of our results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical Review E; corrected versio

    Observational constraints on holographic dark energy with varying gravitational constant

    Full text link
    We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1σ\sigma we find ΩΛ0=0.720.03+0.03\Omega_{\Lambda0}=0.72^{+0.03}_{-0.03}, Ωk0=0.00130.0040+0.0130\Omega_{k0}=-0.0013^{+0.0130}_{-0.0040}, c=0.800.14+0.19c=0.80^{+0.19}_{-0.14} and ΔGG/G=0.00250.0050+0.0080\Delta_G\equiv G'/G=-0.0025^{+0.0080}_{-0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w0=1.040.20+0.15w_0=-1.04^{+0.15}_{-0.20}.Comment: 12 pages, 2 figures, version published in JCA

    Optimal designs for rational function regression

    Full text link
    We consider optimal non-sequential designs for a large class of (linear and nonlinear) regression models involving polynomials and rational functions with heteroscedastic noise also given by a polynomial or rational weight function. The proposed method treats D-, E-, A-, and Φp\Phi_p-optimal designs in a unified manner, and generates a polynomial whose zeros are the support points of the optimal approximate design, generalizing a number of previously known results of the same flavor. The method is based on a mathematical optimization model that can incorporate various criteria of optimality and can be solved efficiently by well established numerical optimization methods. In contrast to previous optimization-based methods proposed for similar design problems, it also has theoretical guarantee of its algorithmic efficiency; in fact, the running times of all numerical examples considered in the paper are negligible. The stability of the method is demonstrated in an example involving high degree polynomials. After discussing linear models, applications for finding locally optimal designs for nonlinear regression models involving rational functions are presented, then extensions to robust regression designs, and trigonometric regression are shown. As a corollary, an upper bound on the size of the support set of the minimally-supported optimal designs is also found. The method is of considerable practical importance, with the potential for instance to impact design software development. Further study of the optimality conditions of the main optimization model might also yield new theoretical insights.Comment: 25 pages. Previous version updated with more details in the theory and additional example
    corecore